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It is well-known that there is an intimate connection between the Radon-
Nikodym property and martingale convergence in a Banach space. This connection
can be "localized" to a closed bounded convex subset of a Banach space. In this
paper we are interested primarily in this connection for a bounded convex set
which is not closed. '

If C 1is a bounded convex set in a locally convex space, C is said to have

the martingale convergence property iff every martingale with values in C con-

verges in measure. Since C 1is not assumed to be metrizable, it is appropriate
to use martingales indexed by an arbitrary directed set, and not restrict attention

to sequential martingales. Similarly, C is sald to have the Radon-Nikodym property

1ff every vector-valued measure defined on a probability space with average range
in C has a derivative which has sufficiently strong measurability properties.

The one-dimensional example of an open interval shows that the two properties are
no longer equivalent. Theorem 2.4 describes the connection between the two notions.

This paper is also concerned with an ordering on the tight probability measures
on a bounded convex set C . The ordering <, which has been called "comparison
of experiments"”, "the Choquet ordering", "the dilation ordering", and many others,
can be described in many equivalent ways; they are given in Theorem 2.2. For
example, © < Vv means J fau < J fdv for all bounded continuous convex functions f
on C . Other descriptions of the ordering involve dilations and conditional
expectations. Earlier versions of this theorem have been attributed to: Hardy,
Littlewood and Polya, Blackwell, Stein, Sherman, Cartier and Strassen.

One other result proved here deserves mention (Corollary 2.7). If C is a
separable closed bounded convex subset of a Banach space, and if each point of C
admits a unique representing measure on the extreme points of C , then C has
the Radon-Nikodym property.

*
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The attentive reader will notice that the assumption of convexity is hardly
ever used in an essential way, so that most of what appears below has a reformula-
tion for nonconvex sets C . I have not included such reformulations here.

The paper has two sections. The first is preliminary; the results there are
either substantially known or straightforward, so most proofs are omitted. The
second section contains the main results of the paper, including those mentioned

above; proofs are given in this section.
1.

If T is a completely regular Hausdorff space, we will write cb(T) for the
Banach space of all bounded continuous real-valued functions on T . We will be

interested in several subsets of the dual cb(T)* in its weak* topology. First,
*
Pe(T) = (p e (T) s (w1 =1, n>0};
this can be identified with the set of finitely-additive regular probability
measures on the algebra generated by the zero sets [18, p. 165); the identification

(and similar ones below) will be made whenever convenient. Note that Pf(T) is

compact. Next,

P UT) = {uery(T): if £ €G(T) (n=1,2,...), £ 40, then {u,f )>0];
these measures extend uniquely to the Baire sets of T . Also,

PT(T) = {p €Pp(T): if £,€¢(T) is a net, £, 40, then (u,fa>»o} ;

these measures extend uniquely to (closed-) regular measures on the Borel sets of

T . These are called T-smooth measures. Next,

Pt(T) = {p,EPT<T)_: for each ¢ > O, there is a compact set
K €T such that p(X) > l-¢) ;

these are called bight measures (on the Baire sets) or Radon measures (on the Borel
sets). Finally,

«©

PS(T)z{.Z tie, 18,20, Etizl,xiel‘} s
i=1 1
n
PT) ={ 2 b6 :n €N, t >0, Tt=1, % €T .

i=1 1
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Note £, 2 Pc 2 PT E Pt 2 PS 2 Pd , with P, =@, if T is compact.

Iet E be a locally convex (Hausdorff) topological vector space, and C a
subset of E . If y € Pf(C) and x € E , we say that x 1is the resultant of
b, and write x = r(p) , iff for every f € E* , we have {u,f) = £f(x) . The
set C will be called d-convex [resp. s-,t-,7-,0-,f-convex] iff for every
BE Pd(C) [resp. PS(C), ete,], there exists r(w) € C . Note that d-convex is
the same as convex and that f-convex is the same as compact and convex. We will
say that C satisfies condition (EC) iff the closed convex hull of a compact
subset of € 1is a compact subset of C, i.e. if K © C 1is compact, then there
is a compact convex set K, with K K, cC.

1 1
The following is from [3].

1.1 PROPOSITION. (a) The set C satisfies condition (EC) if and only if, for

every measure y € Pf(c) with compact support, the resultant r(w) exists in
c .

(b) C is t-convex if and only if C is s-convex and satisfies condition
!EC ) .

It is easy to show that PX(T) is x-convex, where x = d,s,0,f . It is

not hard to show that PT(T) is T-convex. Indeed, suppose Y € PT(PT(T)) .
Then p = r(y) exists in Pf(T) . If £, dsa net in cb(T) with £, 10,
then for all X € ©.(T) , we have (\,f ) I O . But for each « , the function
X (x,fa> is in Cb(PT(T)) , S0 (u,fa> = J[ ()‘,fa> ay(a) - 0 since ¥y 1is
T=smooth. Thus u 1s T-smooth.

An example of D. H. Fremlin shows that Pt(T) need not satisfy condition
(EC) and therefore need not be t-convex. Clearly, if PT(T) = P‘t(T) (such spaces
T are called, variocusly, "universally measurable" or "semi~Radonian" [10, Theorem
2, p. 133]), then Pt(T) is t~convex.

et C be a subset of a locally convex space E , and let (Q,FP) be a
probability space. If ¢: Q+ C is Borel measurable, we define a Borel measure
o(P) on C by oB)(B) = P(¢"(B)) . We will write LO(Q,3P;C) for the set
of all Borel measurable functions ¢: Q> C such that o(P) € Pt(c) , i.e. for
every Borel set B S C , and every ¢ > O , there is a compact set K ¢ B with
P(cp-l(B)\q:-l(K)) <e. For o€ LO(O;C) , we will write x = IA @ dp iff

f(x) = j fp(w))dP(w) for all f € Ex ; if such an element x exists for each
A

0
A€ F, we will say that ¢ is Pettis integrable. (Elements ¢, ¥ of L~ should
be identified iff they are weakly equivalent, i.e. fog@=f° § a.e. for all

f € E¥ , the exceptional set may depend on f .)
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let E be a locally convex space, let ((, 3 P) be a probsbility space, and
let m: ¥+ E be a vector-valued measure. The P-average range of m is
{m(A)/P(A): A €3, P(A) >0} . We say m is differentisble with respect to P
iff there exists o € IO(;E) such that m(A) = j ©dP for all A € & ; in that
A

case we write ¢ = dm/dP . A bounded subset C of E is said to have the Radon-
Nikodym property iff for any probability space ((, % P) and any measure m: & > E

with m << P and average range contained in C , there exists dm/dPp € LO(O, 3,P;C) .

Here is the Radon-Nikodym theorem which will be used below. The basic form
goes back to Grothendieck; the version given here can be found in [13, Theorem 4.91,
except for the assertion that am/ap € r° .

1.2 THEOREM. Let C be a subset of a locally convex space E , let (Q,%P) be

a complete probability space, and let m: ¥+ E be a vector-valued measure << P.

Suppose that m almost has Pe-average range relatively compact in C . Then there
exists dm/ap € 1°(Q,3,P;C) .

The following corollary has been proved independently by several mathematicians
(see for example [4, Theorem 3.1], [9, Théoreme 4.2]).

1.3 COROLIARY. Let T Dbe a completely regular space. Then Pt(T) has the Radon-
Nikodym property.

let E be a locally convex space, (Q,3,P) a probability space, ¢ €
LO(Q, F,P;E) . Let & be a sub-c-algebra of F . A conditional expectation of
¢ given & is a function ¢ € LO(Q,.&P;E) such that £V = E[f° o8] for all
£ € Bx ; we write ¥ =Elol¥] . If ¢ ¢ LO(Q;C) , where C 1is a bounded t-convex
subset of E , then ¥ = E[p|4] if and only if fA ¢ ap = jA ©dP for all A€J.

Thus, if C also has the Radon-Nikodym property, then E[cp{.&] necessarily exists.
let € be a bounded convex subset of a locally convex space E . A martingale
in ¢ consists of: a probability space (Q,3,P) ; a directed set J ; a family

( aa)a ¢g ©Of sub-o-algebras of 3 indexed by J such that & < :% if w<p;
. 0 .

and a family (g,), ., vhere ¢, €L (Q3,P;C) ando 9, = E[ch\Ea] if a<p .

let (woz)otéJ be a martingale in C , and let ¢ € L(Q,3,P;C) . We say that

¢ closes (Q:oa) iff ¢Q=E[‘P\3a] for all « € J . We say that g converges

in measure to ¢ 1iff, for every neighborhood U of O in E ,

lim Plw: g lw) -~ 9(w) €U} =1 .
a€d

We say that ¢, converges in mean to ¢ iff, for every continuous seminorm g

on E,

(_j‘zn'} j Q(tpa(w) - (P(u)))dlj(w) =0 .
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1.4 PROPOSITION. Let (g,) be a martingale in C, and let ¢ € LO(Q, 3,P;C) .

The following are equivalent.

() g, converges in measure to ¢ ;

(v} 9, converges in mean to o ;

(e) © closes (%5} and ¢ is measursble with respect to the o-algebra
generated by UOéGJ 30( .

1.5 PROPOSITION. Iet (cpa) be a martingale in C . Then (cpa) converges in
measure if and only if cpa(P) converges in Pt(C) .

The bounded convex set ¢ 1s said to have the J-martingale convergence

property iff every martingale in C indexed by J converges in measure. (The
N -martingale convergence property will be called the sequential martingale con-

vergence property.) Also, C is said to have the martingale convergence property

iff it has the J-martingale convergence property for all directed sets J . The
well-ordered martingale convergence property and the totally-ordered martingale

convergence property are defiped in a similar fashion.
2.

Let E Dbe a locally convex space, and let C be a bounded convex subset
of E . A partial order can be defined on Pt(C) as follows. If p,v € Pt(c) s
define yp < v iff {u,£) < (v,f) for all bounded continuocus convex functions f
on C . This relation is clearly reflexive and transitive; the antisymmetry of
the relation follows from the following result, which essentially goes back to
LeCam (see [1k, p. 216], [11, Lemma 2.1], [12, Lemma 3.1]).

2.1 PROPOSITION. Iet (7,%) be -a completely regular space. Suppose F ch(T)
is a class of functions which separates points of T and if f£,g € F, then the

pointwise meximum fvg € F. Let I be the topology on T generated by F .
E Ha:u € Pt(T,S'> ?_{lﬁ

1imj fdp,a=J fdy for all f €F,
a 7 T

then p > in the weak* topology of Pt(T’ T') . In particular, if p,v €
Pt(T,U) and deu: jfdv for a1 f ¢ F, then pu=v .

Let € Pt(c) . A p-dilation is a function
0
T € L°(C,84(C),u5 R (C))
such that for every h € E* , we have (T(x),h) = h(x) for u-almost every x .
(8(C)) denotes the Borel sets on C ; @*(C) the completion with respect to u ;
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Pt(C) is understood to have its weak* topology.) If C is t-convex, then r{T(x))
exists for every x , so in that case the condition is the same as the assertion
that r ° T is weakly equivalent to the identity on ¢ . If v € Pt(C) , we write
v = T(u) , and say that ¢ dilates to v, iff {(v,f) = j {P{x}, £ du(x) for all
£ €¢(C) ; that is, v = [Tau s g0) .

The following theorem shows that the ordering 4 can be characterized in
terms of dilebions and in terms of conditional expectations. It goes back {(in
the one-dimensional case) to Hardy, Littlewood and Polya. The proof here is
closest to that of V. Strassen [17].

2.2, THEOREM. Let C be bounded and convex, and let y,v € Pt(C) . The following
are eyuivalent:

(a) w = v;ie. (uf) < {v,f) for all bounded continuous convex functions

f on C3

(p) w dilates to v ; i.e. there is a p-dilation T: C -~ Pt(C) such that
T(w) = v ;

(c) There exist a probability space (Q,%,P), a o-algebra b < ¥, and functions
o € 1°(0,5,P5¢) with o(P) =, #(P) = v, and o= E[¥|4] .

Proof. (a) = (b). If f &€ Cb(C) define its upper envelope f": C > R by
£*(x) =inf{h(x): his bounded continuous and affine on C and h > £} .

Note that for fixed f , the map xw» f"(x) is upper semicontinuous, hence Borel
measurable, Also, for fixed x , the map f» £7(x) is continuous for the uniform

norm on GC(C) . Ve can also write
(%) =inf{h(x): b is bounded contimuous and concave on C and h > f} .

Iet S be the vector space of all Borel-measurable simple functions 6:
X - Cb{C) . Define p: S~ R by

p(8) = [ 8(x)"(x) au(x) - (1)

This integral exists since the integrand is bounded and Borel measurable. It is
easily checked that p is a sublinear functional on § . For fe cb{C) and
A € B(C) , define XA®f €S by

£ if x €A
(X, & )(x) =
A 0 if xfA .
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Thus £ & %o ® f 1is an embedding of cb(C) in 8 . Define a linear funetional

£ on the range of this embedding by
(% ® ) = (v, T) . (2)

We claim that f,(XC@) £y < p(XC® £} . Let h Ybe concave bounded and continuous
- f

on ¢ and h>1f . Then fav< J hdv < J h du  {by the assumption that
B~V ), so by the tightness of u , j f dv < ‘J' £% du ; i.e. ﬂ,(xc ®f) < p(Xc®f) .

By the Hahn-Basnach theorem, the linear functional £ can be extended %o
all of S with £(8) < p(8) for all 8 €35 . Define m: B(C) - cb(c)* by
{n{a), £y = z(XA®f) . Now if h is affine, bounded and continmuous on C , then
n=h, so m(A),h) = 4%, ®h) < p(X, ®h) = jA n" ap = j’A hdy ; similarly

(=h)" = =h , so {m(A),-h) SJ («h)dp ; therefore
A
@a),mn = | nap . (3)
A

In particular {m(A),1) = p(a) . Again, if £ € cb(c) and £ >0, then (-f)" <O,
so {(m(A),f) = 2%, ®(-£)) < p(x, ®(-T)) = J ()" du < 0 5 thus (@m(A),f) >0 .

A
Now if £ >0, then (m(4),f) = (m(C),£) - (m(c\A), ) < @(0),f) = 4(%, ®F) =
{v,£) , so 0 <m(A) <v . This shows that m(A) is tight, so m{a)/u(a) € P,G{c) .

Thus the vector-valued measure m: B(C) > Cb(C)* has average range in Pt(C) .

By Corollary 1.3, there is T: C » Pt(C) , T € LO(C,BH(C),;L; Pt(c)) , such
that j T du = m(A) for all A € B(C) . Now {v,f) = z(xc®f) = (m(C),f) =
A

j (r{x), ) du(x) for all f € cb(c) , i.e. v = T(p) . Finally, if h € E¥ , then
for & €®(C) , using (3) yields | (2(x),n) du(x) = @(a),n) = [ mau, so

A A
{T(x),h) = h(x) w=-a.e. Thus T is a p-dilation.

(b) = (c). Suppose v =T(p) . et Q=C xC, F=08C) xBC) , &=8B(C)x
fc,$) , and define @, 4: Q> C by olxy) =x, $(xy) =y . Define P on &
by

p(0) = [ T(:)(0) au(x)

where D_ = {y € C: (x,y) €D} . The integrand is f*(C) - measurable since T
is a dilation. It follows that

[ea =] | ety arneole) au)
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for any bounded JF-measurable function g on Q. Now for A € ®(C) 5

o(®)(a) = (¢ (a)) = [ 2(x)((a x0), Jap(x)
= [ 1 aux) = wia)
A
(e)(8) = p(47H(a)) = [ T(x)((C xa),) ap(x)

[reo(a) antx) = (u)(8) = w(a)

so ¢(P) =u, ¥P) =v . This shows that o, ¥ € LO(Q;C) . Also, for any A € 8(C)
and h € E* ,

&Xﬁu¢@=&&hmwﬁmﬁww

1

[, 00 auw) = [ ] neanG ) aut)

f h°<Pd‘P >
A xC
so o= B[ V4] -

(e} = (a). Suppose @ =E[¥|&] and oP) =p, ¥WP)=v. Iet f be
bounded, continuous and convex on C . They by Jensen's inequality, ({(u,f) =

Jeemvisee< fmecviier = (£opap = v,1) . a)

Here is a lemma which is probably known, but I am unable to provide a refer-
ence. The proof is, apparently, not merely are application of Zorn's Lemma, but

requires well-ordering as well.

2.3. LEMMA. let (P,E) be a parbially ordered set. Suppose every chain in P

has at least upper bound. Then any subset of P which ig directed has at least
upper bound.

Proof. et D =P be a directed subset of P ., Iet 7 be the collection
of all A € P which satisfy

(&) A2D,

(b} if C is a chain included in A , then sup C € A .
Notice that PEM, so MEP . et M=N7M. Then MEM.

Next, let R be the collection of all B & P which satisfy

(a) DeBcM,

(b) B is directed.
Notice that D € R , so R # ¢ . Apply Zorn's Lemma to R ; let R € R be maxi-
mal. We claim that R €% . Trivially R =2D . Suppose (for purposes of contra-




70

diction) that not every chain in R has its sup in R . Then there is a well=-
ordered chain in R with sup not in R . Iet & be the least ordinal of such

a chain. Iet R!' = {sup C: C is a chain of order type £ dincluded in R} UR .

We claim that R* € R . Clearly R' 2R 2D and R' ¢M . To prove that R’

is directed, let x,y € R' , say x = sup{xy: Y<E}l, ¥y = sup{yY: Yy < g}, with
X5V €R., (If x€R, let xy=x for all y<E§g.) Define z,, € R inductively
so that

Z*{+:L z XY ’ Z~(+l z yy ’ Z\/+:L Z Zy )

and if y< § is a limit ordinal,

z, = sup{zB: B <yl . (2)
Now (1) is possible since R is directed and (2) is possible by the minimality
of E. Then z = sv.p{zy: y<E €R'" and z>%x, z2>y . Thus R' is directed,
so R' € ® . By the maximality of R , we have R' = R , so in fact every chain
in R has its supin R . Thus R €% . Then we have R=2M, so R =M . This
chows that M 1s directed.

Next, we claim that every subset S of D has an upper bound in M . To
prove this, well-order 5 = {XY: vy < @} , and proceed by induction on @ . For
a=1,8={x)cM. If a=pg+1, let y €M be an upper bound for {xyz
Yy < p} , which exists by the induction hypothesis; since M is directed, there
is an upper bound for {y,xa} in M. If o is a limit ordinal, construct in-
ductively yY > XY R 'yY EM, yY increasing. Since M €7, sup{yy: y<a} €M
and is the required upper bound.

In particular, D itself has an upper bound in M , say X . If y is
any upper bound for D in P, then {x € P: x<y) €M, so Mci{x €P: x<y},
and hence X, <y . Therefore X, is the least upper bound of D , g.e.f, U

2.4. THEOREM. Let ¢ be a bounded convex set in a locally convex space. Consider

the following conditions:
{a) € has both the Radon-Nikodym property and the sequential martingale

convergence property.

(b) C has the well-ordered martingale convergence property.

{¢) C has the marbtingale convergence property.

(b') Bvery well-ordered subset of Pt(C) has a least upper bound.

(c') Every directed subset of Pt(C) has a least upper bound.

Then: (b), (¢), (b'), (¢') are equivalent and imply (a). If C is t-convex,

then all five conditions are equivalent.
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Proof. (b) = {c). Suppose C has the well-ordered martingale convergence
property. Iet D be a directed set, and suppose (cpa)aeD
values in C ; the additional data is (O, %,P) , (Ea}a €D - There is a partially
ordered set Q 2D in which each chain has a least upper bound, namely let Q
be the set of ideals of D [1, p. 113]. As in the proof of lemma 2.3, there is
a directed set M , D €M ¢ @, such that every chain in M has sup in M , and

is a martingale with

if DcAcM and every chain in A has sup in A, then A =M . For each
Y €M , define 3_\/ to be the o-algebra generated by U{ 3@: @ €D,x<y} . ILet
A = {v € M: there exists 9, € LO(Q,gy,P;c) such that ¢ = E[cpv\ga] for all
0 €D with a< Y} . Note that such a function Py (if it exists) is unique
as an element of LO(Q,Ey,P;C) . Hence, if v,¥' € A, and Y < Y' , then
¢y = El cpYJEY] .

Clearly D g A &M . We claim that every chain in A has sup in A . ILet
B be a chain included in A ; write Vo =sup B . Now B has a well-ordered

cofinal subset Bo . Then ( cpY) is a well-ordered martingale, so it con-

yGBO

verges; by Proposition 1.k, its limit @ satisfies 9, = Bl oy 13&] for all
o °
%€D, aly, ,s0 Y €A. {By the choice of q , if @< Y, , then a<¥

for some Y € Bo .) Thus, every chain in A has sup in A, 80 Wwe have A =M .

*
Now M is directed, sc M has a largest element Y . The martingale
woc)aen is closed by CP‘Y* , €0 (q;oc) converges.

(e) = (b) is trivial.

(¢) = (a). Suppose ¢ has the martingale convergence property. Then C
trivially has the sequential martingale convergence property. lLet (Q,3,P) be
a probability space and m: F > E a vector-valued measure with m << P and
average range included in C . ILet D be the set of finite F-measurable partitions
of {1, ordered by a.e. refinement. For « = {A:L’AE""’A } €D, let & Dbe the

n
og-algebra generated by {A

l,...,An] , and define 0t Q- B by
miA
= = BA) %

Aeq

where we inberpret 0/0 as an arbitrary element of C . Then 9, € LO(Q, 3a,P;C) 5
and if < B, we have @, = E[ % Boc] . ‘Thus {q:{x} is a marbingale with values
in ¢ . Let g €1°(Q,%P;C) be the limit of (g,) . Thus ¢ = E[|Z ] for
all o €D by Proposition 1.k, Iet A € F. Then « = [4,(0N\A} €D, and we

have

na) =B 2w = [ q=| o,
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so dm/dP = @ . Thus C has the Radon-Nikodym property.

(a) » (b). Let C be teconvex. Suppose C has the Radon-Nikodym property

and the sequential martingale convergence property. ILet ( cpa) be a martingale

a<§g
indexed by the ordinals less than the ordinal & . If & =p8 + 1 , then (cpa)

is closed by cpS . If & has countable cofinality, then convergence follows %I‘<OI§11
the sequential martingale convergence property. Suppose that £ has uncountable
cofinality, that is, any countable set of ordinals < & has an upper bound < § .
Let ¥, denote the o-algebra generated by U Ea: a< &} . Since E has uncount=
gble cofinality, & = U{Sa: a<§g} . For A€EF , say AE 3, , let n{a) =

9, 4P . This integral exists since € is t-convex. The average range of n
A

is included in C , so by the Radon-Nikodym property, there exists ¢ = dm/dP .
Now if A € 3"@ R ‘fA o dP = n{A) = ‘(A cpadP ; SO @ = E[cﬂ&’a] . Thus (¢a>a<§
converges to ¢ .

(') = (¢') follows from Lemma 2.3; (b')=(b) follows from Proposition 1.5.

(e') = (b') is trivial.

(b) = (b*). Suppose C has the well-ordered martingale convergence property.
Let (p’v)y<§ be a well-ordered subset of Pt(C) . Fir a< g, let ch be a
product‘of copies of € indexed by the ordinals < ¢ ; equip Qa with the product

o-algebra; for y<a< § , define : Q> C by 9, Y(w) = w(y) ; and let
£

R v oo

2
3a,y be the c-alge;ra on Qoa generated by ((‘Ooc, fi)
a measure P on ( so that, for each «, (‘Poz,y’goc,\()y<a
and cpoa,'\((Pa) = by - Oon Q.L =C, let P =, so that ? 0 (Pl) = W, - Suppose
a>1 and PB has been defined for all p <« .

B<y We will define inductively
T forms a martingale

First, suppose « is a 1limit ordinal. Then Ooc ig the inverse limit of
(Q B>S < and the measures P, are consistent, so there is a unique extension
Poz to Qoa consistent with the PB .

Next, suppose o =pg+1 . Then <(pi3,v)v<§5 is a martingale, hence converges,
say to 4;5: QB - C. {(If B =pg'+1, then of course ‘lfB =9 p .) ©Now the
y<p 2 5 Vs T B

. Define Poc on Qoz=QB X C by:

measure VB = WB(PB) is the least upper bound of (uy)

Choose a vs-dilation T so that Tﬁ(vB) =

3 "8

B8) = | e a0

where A = {x € C: (w,x) €A} for wE& QB . Thus
]

9 p(By) = by and Eg, |

3% prl = 9 g for B' <@ . This completes the inductive definition of
(Poc) a<t
As before, (ng,y)y<§ is a martingale, hence converges, say to ‘l’E: Qg > C.

- s 4a . [}
The measure Ve = ‘Vg(Pg) is the least upper bound of (p.y)y<g
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If the condition (b') or (c') is satisfied, then (accoring to Zorn's Lemma)
for every u € Pt(C) , there is a maximal X € P,c(C) with A % W . This fact
is relevant in Chogquet~type representation theorems: see {16, p. 251, [6, p. 157].

Next is a result giving conditions under which every maximal measure is
concentrated on the extreme points in the sense that w(B) = 1 for every Borel
set B 2ex C. (This is not true in general, even if ¢ is a closed bounded
convex set in a Banach space: see [6, p. 159].) Of course, part (iii) is weaker
then the known Bishop-de Leeuw Theorem.

2.5 PROPOSITION. ILet € be a bounded convex subset of a locally convex space.
Suppose either

(i) ¢ is an ic; or

(ii) C is completely metrizsble and r: Pt(C) - C is open; or

(ii1) C is compact and r is open.

Then if p € Pt(c) is maximal , we have u{B) =1 for every Borel set B 2ex C .

Proof. We will prove the contrapositive, Suppose u(B) <1 for some Borel
set B 2 C . Then we may assume without loss of generality that there is a compact
set K = C\ex C with u(K) =1 . In each of the three cases, C is t-convex,
so T Pt(c) + C is defined. Iet R = {ex: Xx €C} . Now R is closed in Pt(C)
and, in case (i} r is continuous on Pt(C)\R , which is analytic; in case (ii)

r 1is continucus and open on Pt(C)\& which is completely metrizsble; in case

{(iii) r 1is continuous and open on Pt(C)\R which is locally compact. Then

(i) by the von Neumann selection theorem or (ii) (iii) by [7], there is a measurable
weak section T: Clex C » Pt(C)\R , i.e. roT 1is weakly equivalent to the identity
on C\ex C . Define T(x) = €, for x €ex C, so that T is a p-dilation. We
claim that T(u) # ¢ ; this will show that y is not maximal.

Now T € 0 , S0 there is a compact set & ¢ Pt(c)\ﬂ with & c T(X) and
u(T-l(S) NK)>0. But § is compact, R is closed, and 8 NR = ¢ , so there
is a continuous function h: Pt(c) > ] suchthat h=0 on 8, h=1 on R
and 0<h<1. Now p{x: h(T(x)) ;éh(ex)] > 0 . But the topology of Pt(C)
is generated by the set of maps ve [ £ dv , where f is bounded continuous
convex (Proposition 2.1)., Thus there is a bounded continuous convex funetion £
such that ulx: (P(x),£) # (e, £)) >0 . Tms (T(p),f) = | (2(x),D)au(x) >
{u,£> . Therefore T(p) # w , and thus | is not maximal. O

Condition (iii) is studied by R. C. O'Brien in [15].

1et (0,%P) be a probability space and € a bounded convex set., Write
F-o{acm P(A) > 0} . A function M % - ¢ is an averaged measure provided

WAUB) = mpcey &) + sraoey W)
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for disjoint A, B € 3. Clearly, if m 1is z measure with average range in C ,
then m/P is an averaged measure with values in C and conversely (countable

additivity of m = P+ 17 follows from the boundedness of C ).

2,6 PROPOSITION. Let C' , C be bounded convex sets in locally convex sSpaces.
Suppose wu: C' » C is continucus, bijective and affine, If C' has the Radon-
Nikodym property, then C has the Radon-Nikodym property.

Proof. Let {Q,3,P) be a probability space, m a measure with average
range in C . Then T =m/P is an averaged measure in C , Define 7': ¥ - ¢
by N(a) = u‘l(n(A)) . Since u is bijective and affine, 1 is an averaged
measure in €' . Since C' has the Radon-Nikodym property, there is ¢' ELO(Q, &, P;
C') with m'(A) = P(A)-lj © &P for all AE€F . Let g=ucq . Now u is
continuous, so o € LO( >

Q,%P;C) . Also u is contimuous and affine, so T(&) =
w(r () = ()7 [ ueoar -2 [ 9ap . Tms ¢ has the Radon-Nikodym
A A

property. O

2.7 COROLLARY. let C be a bounded convex set in a locally convex space. Write

ex C for the set of extreme points of C . Suppose that

(1) ex C is relatively t-convex in C ; i.e. for every u € Pt(ex C) , there

exists r(u) €C ;
(2) for every x € C ; there is a unique 1y € Pt(exc) with r{p) = x .

Then ¢ has the Radon-Nikodym property.

Proof. First, Pt(ex C)} has the Radon-Nikodym property by Corollary 1.3.
The resultant map r: Pt(ex C) » ¢ is defined by (1) and bijective by (2); it is
always affine and continuous. Thus by Proposition 2.6, € has the Radon-Nikodym
property. 0

Bemarks. (1) For example, if C is a separable closed bounded convex subset
of a Banach space, then ex C is universally measurable [2, Prop. 2,1], so Qt(ex c)
can be identified with {y € Pt(C): w(ex C) = 1} . Thus, if every point of C 1is
represented by a unique measure on ex C , then C has the Radon-Nikodym property.
This is a (very) partial converse of {5].

(2) If ¢ is a separable closed bounded subset of a Banach space and C is
a (noncompact) simplex, does it follow that a point of C can have at most one
representing measure on ex C 7 (The Radon-Nikodym property is not postulated,
ef, [3, Theorem 1.1].)

(3) If C 4is a nonseparable closed bounded convex subset of a Hilbert space,
the set of maximal measures on C need not have the Radon-Nikodym property (the
example in [6, p. 159] exhibits this behavior), so Proposition 2.6 will not apply

in this case.
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Note. After this paper was written, H. von WelzsHcker kindly gave me a copy

of his paper "Einige masstheoretische Formen der SHtze von Krein-Milman und Choquet™.

It has considerable overlap with the present paper. Among many other things, von

WeizsHcker gives an example of a completely regular space T for which Pt(‘]?)

fails the martingale convergence property. (See von WelzsHcker's paper in this

volume. )
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